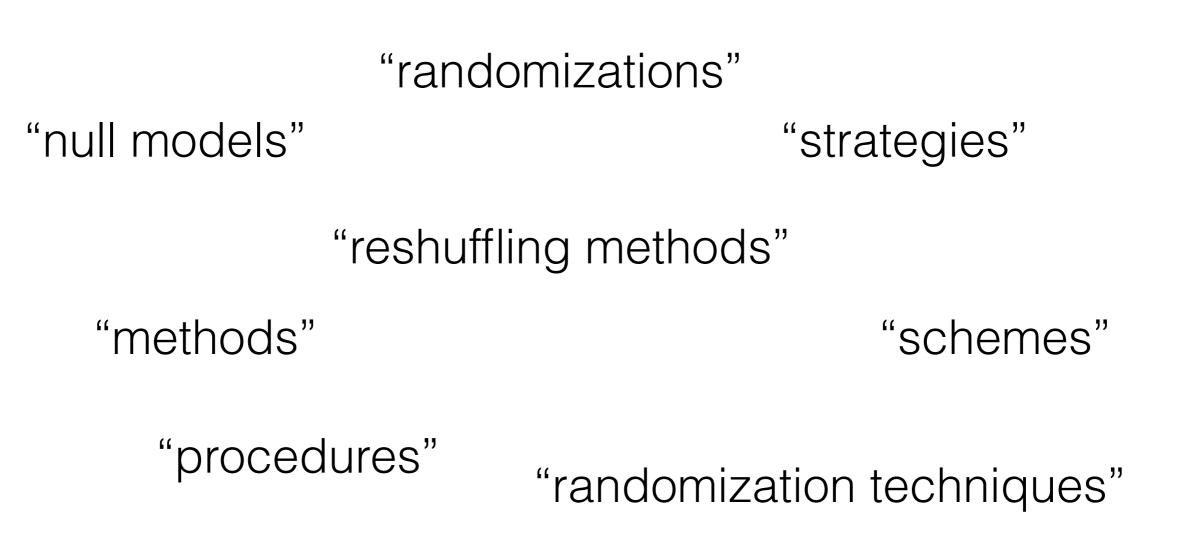

Microcanonical randomised reference models for temporal networks

Mikko Kivelä HONS@NetSci'19 2019-05-28

Typical network data analysis

What are the "Erdős-Rényi models" and "configuration models" of higher-order networks? What are the "Erdős-Rényi models" and "configuration models" of temporal networks?


Temporal path lengths in the communication network

M. Kivelä, R. K. Pan, K. Kaski, J. Kertész, J. Saramäki, M. Karsai: *Multiscale analysis of spreading in a large communication network*, J. Stat. Mech. 3 P03005 (2012) M Karsai, M Kivelä, RK Pan, K Kaski, J Kertész, AL Barabási, J Saramäki: Small but slow world: How network topology and burstiness slow down spreading, Physical Review E 83 (2), 025102 (2011)

Randomized reference models for temporal networks

L. Gauvin,¹ M. Génois,² M. Karsai,³ M. Kivelä,⁴ T. Takaguchi,⁵ E. Valdano,⁶ and C. L. Vestergaard^{2,7,8,*}

arXiv:1806.04032

Randomized reference models for temporal networks

L. Gauvin,¹ M. Génois,² M. Karsai,³ M. Kivelä,⁴ T. Takaguchi,⁵ E. Valdano,⁶ and C. L. Vestergaard^{2,7,8,*}

"random time shuffle" "time-shuffling" "permuted times" "shuffled time stamps" "random dynamic"

"randomly permuted times"

"reconfigure"

arXiv:1806.04032

Randomized reference models for temporal networks

L. Gauvin,¹ M. Génois,² M. Karsai,³ M. Kivelä,⁴ T. Takaguchi,⁵ E. Valdano,⁶ and C. L. Vestergaard^{2,7,8,*}

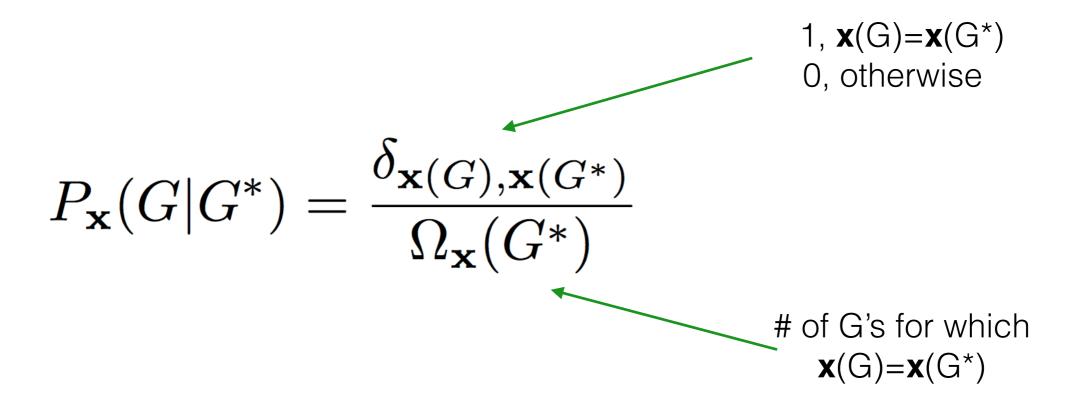
"random time sł	These are all the	ne-shuffling"
	same	
"shuffled time st	method/model!	
		n dynamic"
	Many more exist in	
"randomly p		
	recc	onfigure"

arXiv:1806.04032

Applications

Systems

- Communication (email, sms, calls, ...)
- Contact (physical proximity, sexual partners, ...)
- Mobility (airline, public transport in cities, ...)
- Transportation (cattle movements, cargo ships, ...)


Measurements

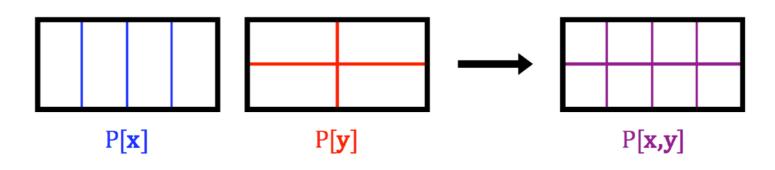
- Infection spreading: SI, SIR, …
- Voter model
- Complex contagion
- Motif analysis

•

Microcanonical random reference models (MRRMs)


- Constraint/feature x(G) = function with network as input
- MRRM = sample uniformly randomly out of all networks with the same value of x(G*) as the input network G*

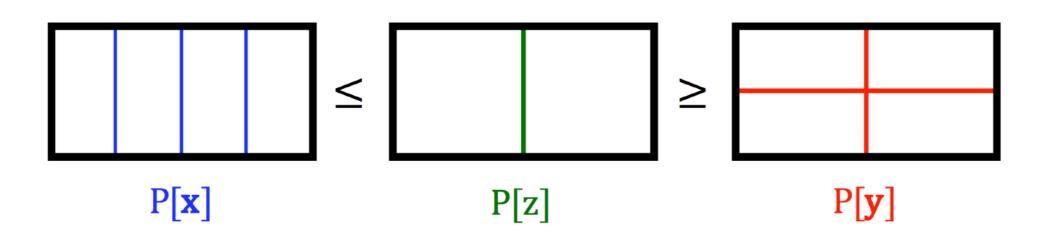
 Examples, ER model: constraint is the number of edges; configuration model: constraint is the degree distribution


MRRMs, equivalent representations

- 1. A shuffling/sampling algorithm P[x]
- 2. The constraint function **x**
- Partition of the space of all temporal networks (two networks in the same part if x gets the same value for them)

Microcanonical random reference models (MRRMs)

- Almost all random reference models we found in the literature are MRRMs
- Constraints can be added together to form new constraints
 - (x,y)(G)=(x(G),y(G))

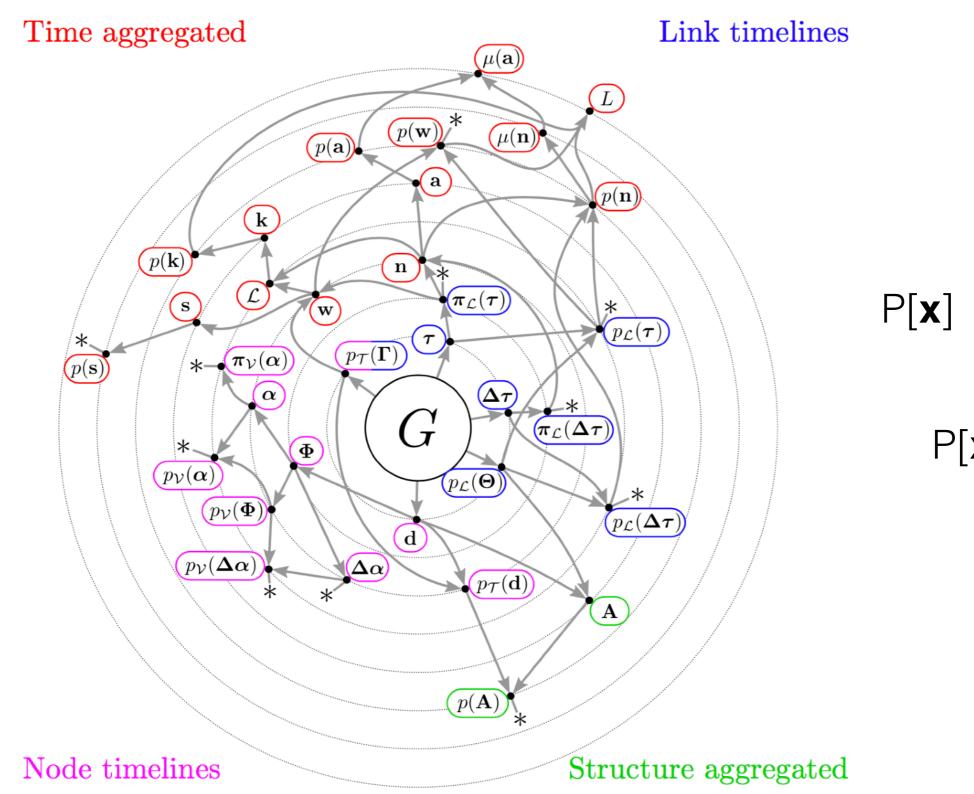


 Suggest a canonical naming convention based on the features

Shuffling method in the literature

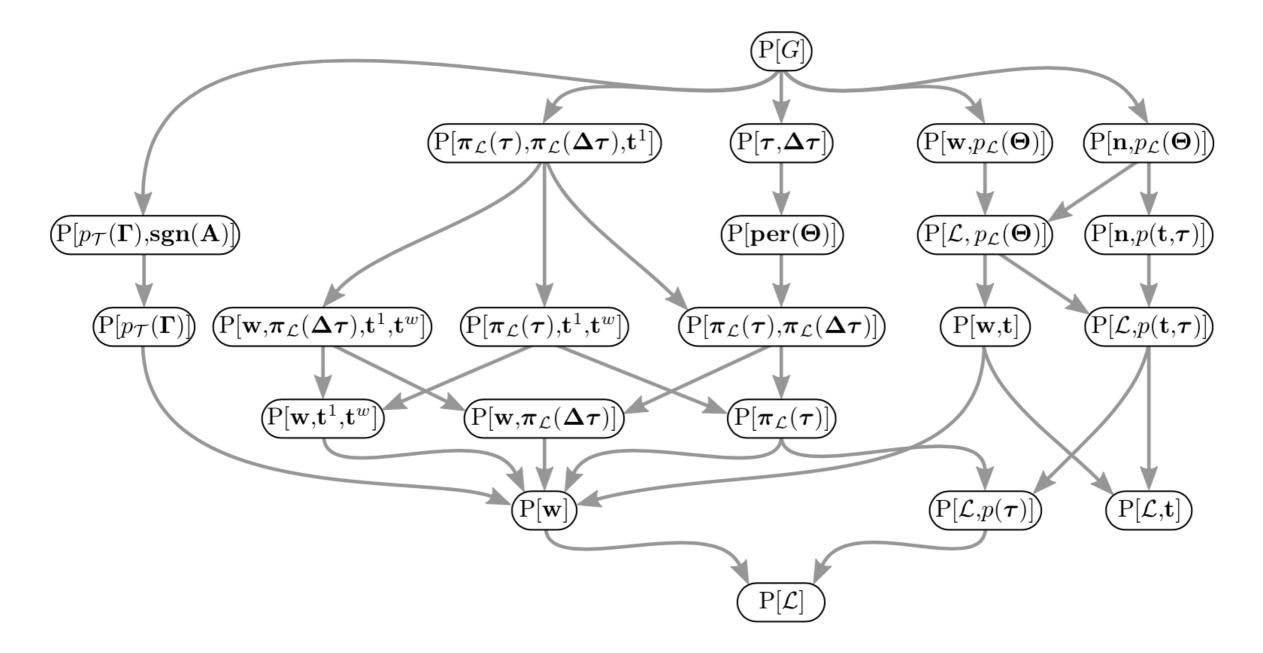
Canonical name	Common name	Aggregated								Temporal-topological									
		topological weig				weighted temp.		node			link								
		G^{stat}	k_i	L	a_i	s_i	n_ℓ	w_ℓ	E^t	g^m	Φ_i	α_i^m	$\Delta lpha_i^m$	d_i^t	Θ_{ℓ}	$ au_\ell^m$	$\Delta \tau_{\ell}^{m}$	$t^1_\ell \ t^w_\ell$	
Event shufflings:																			
P[E]	Event shuffling	-	-	_	-	μ	_	_	μ	-	-	-	-	μ	-	-	-		
$P[E,G^{stat}]$		x	x	x	-	μ	-	μ	μ	-	-	-	-	μ	-	-	-		
Link shufflings:																			
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta})]$	Link shuffling	-	μ	x	μ	μ	p	\boldsymbol{p}	x	-	-	-	-	μ_{T}	$p_{(\ell)}$	$p_{(\ell)}$	$p_{(\ell)}$	p p	
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta}), \mathbb{I}_{\lambda}]$		\mathbb{I}_{λ}	μ	x	μ	μ	p	p	x	-	-	-	-	μ_{T}	$p_{(\ell)}$	$p_{(\ell)}$	$p_{(\ell)}$	p p	
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta}),\mathbf{k}]$	Maslov-Sneppen	-	x	x	μ	μ	p	p	x	-	-	-	-	$\mu \tau$	$p_{(\ell)}$	$p_{(\ell)}$	$p_{(\ell)}$	p p	
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta}), \mathbb{I}_{\lambda}, \mathbf{k}]$		\mathbb{I}_{λ}	x	x	μ	μ	p	p	x	-	-	-	-	μ_{T}	$p_{(\ell)}$	$p_{(\ell)}$	$p_{(\ell)}$	p p	
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta}), G^{\mathrm{stat}}]$		x	x	x	μ	μ	p	p	x	-	-	-	-	μ_{T}	$p_{(\ell)}$	$p_{(\ell)}$	$p_{(\ell)}$	p p	
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta}),\mathbf{w}]$		x	x	x	μ	x	p	x	x	-	-	-	-	μ_{T}	$p_{(\ell)}$	$p_{(\ell)}$	$p_{(\ell)}$	p p	
Timeline shufflings:																			
$P[\mathbf{w}]$	Timeline shuffling	x	x	x	-	x	-	x	μ	-	-	-	-	μ	-	-	-		
$\mathrm{P}[\mathbf{w},\!\mathbf{t}^1,\!\mathbf{t}^w]$		x	x	x	-	x	-	x	μ	-	-	-	-	μ	-	-	$\mu_{\mathcal{L}}$	x x	
$\mathrm{P}[\pi_{\mathcal{L}}(\mathbf{\Delta au})]$		x	x	x	x	x	x	x	μ	-	-	-	-	μ	-	$\pi_{\mathcal{L}}$	$\pi_{\mathcal{L}}$		
$\mathrm{P}[\pmb{\pi}_{\mathcal{L}}(oldsymbol{\Delta} oldsymbol{ au}), \mathbf{t}^1]$		x	x	x	x	x	x	x	μ	-	-	-	-	μ	-	$\pi_{\mathcal{L}}$	$\pi_{\mathcal{L}}$	x x	
$P[\mathbf{per}(\mathbf{\Theta})]$		x	x	x	x	x	x	x	μ	-	-	-	-	μ	-	x	x		
Sequence shufflings:																			
$P[p_{(m)}(\mathbf{g})]$	Sequence shuffling	x	x	x	-	x	-	x	p	$p_{(m)}$	-	-	-	$p_{(m)}$	-	-	-		
$\mathrm{P}[p_{(m)}(\mathbf{g}),\mathbf{sgn}(\mathbf{E})]$		x	x	x	-	x	_	x	p,sgn	$p_{(m)}$	-	_	-	$p_{(m)}$	-	_	-		
Snapshot shufflings:																			
$P[\mathbf{E}]$	Snapshot shuffling	-	-	-	-	μ	-	-	x	-	-	-	-	μ_{T}	-	-	-		
$\mathrm{P}[\mathbf{E},\!\mathbf{\Phi}]$		-	_	-	-	μ	-	_	x	-	x	x	x	$\mu \tau$	-	-	-		
P[d]		-	-	-	-	μ	-	-	x	-	x	x	x	x	-	-	-		
P[iso(g)]		-	-	-	-	μ	-	-	x	\simeq	-	-	-	$\pi_{\mathcal{T}}$	-	-	-		
$\mathrm{P}[\mathbf{iso}(\mathbf{g}), \mathbf{\Phi}]$		-	-	-	-	μ	-	-	x	\simeq	x	x	x	$\pi_{\mathcal{T}}$	-	-	-		
$P[\mathbf{E}, G^{\text{stat}}]$		x	x	x	-	μ	-	μ	x	-	-	-	-	μ_{T}	-	-	-		
Timeline and snapsho	ot shufflings:																		
$P[\mathbf{w,E}]$	Time-stamp shuffling	x	x	x	-	x	_	x	x	-	-	_	-	μau	-	_	-		
Compositions:																			
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta})]\mathrm{P}[E,G^{\mathrm{stat}}]$		-	μ	x	-	μ	-	μ	μ	-	-	-	-	μ	-	-	-		
$\mathrm{P}[p_{(\ell)}(\boldsymbol{\Theta}),\mathbf{k}]\mathrm{P}[\mathbf{w},\mathbf{E}]$		-	x	x	-	μ	-	p	x	-	-	-	-	$\mu_{\mathcal{T}}$	-	-	-		
$\mathrm{P}[p_{(\ell)}(\mathbf{\Theta}), \mathbb{I}_{\lambda}, \mathbf{k}] \mathrm{P}[\mathbf{w}, \mathbf{E}]$		\mathbb{I}_{λ}	x	x	-	μ	-	p	x	-	-	_	_	μ_{T}	-	_	_		

Hierarchy/partial order

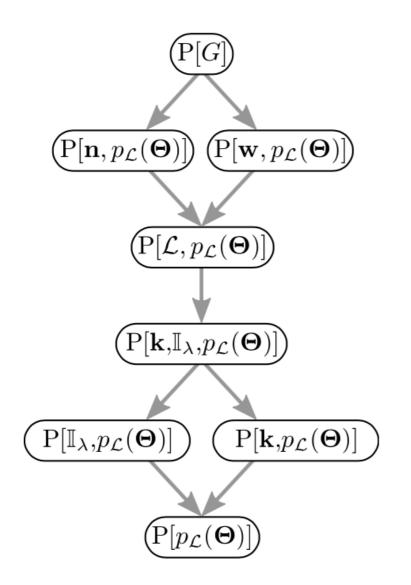


- Partial order: x < z if partition of x is refinement of partition of z
 - **x** is more strict constraint than **z**
 - P[z] "shuffles more" than P[x]
 - Not all MRRMs comparable (e.g., P[x] and P[y])
- Example: ER model "shuffles more than" the configuration model

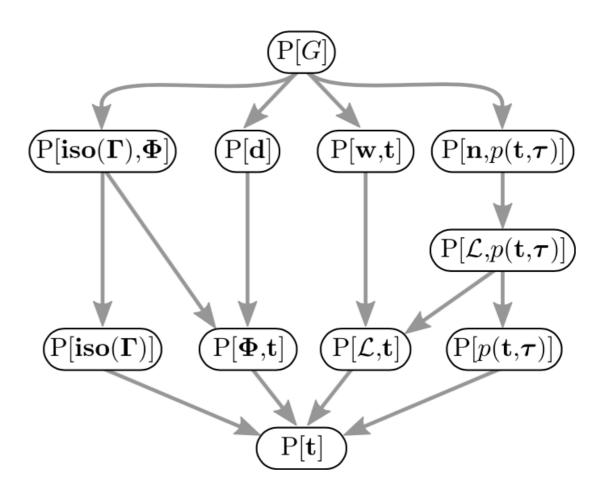
Shuffled constraints in the literature


→ P[**y**]

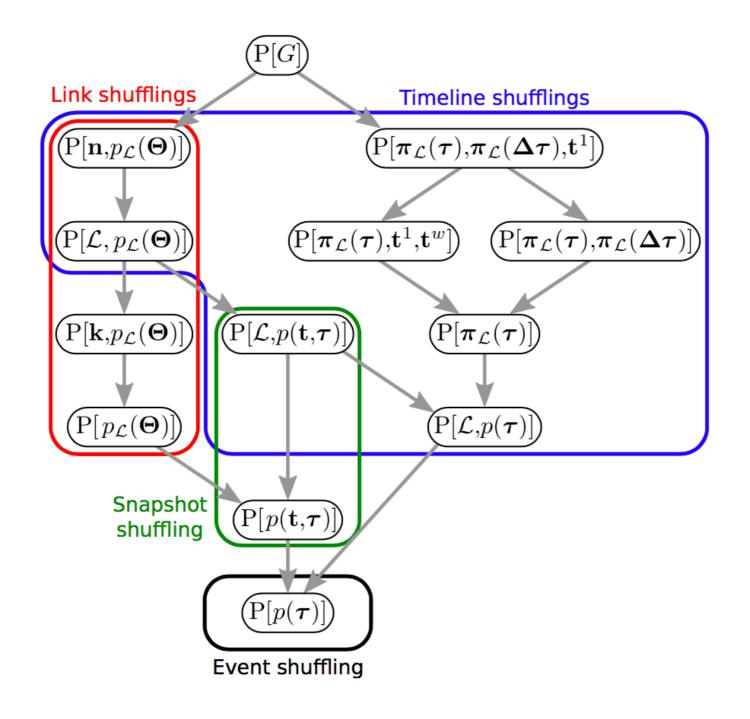
 $P[\mathbf{x}] < P[\mathbf{y}]$

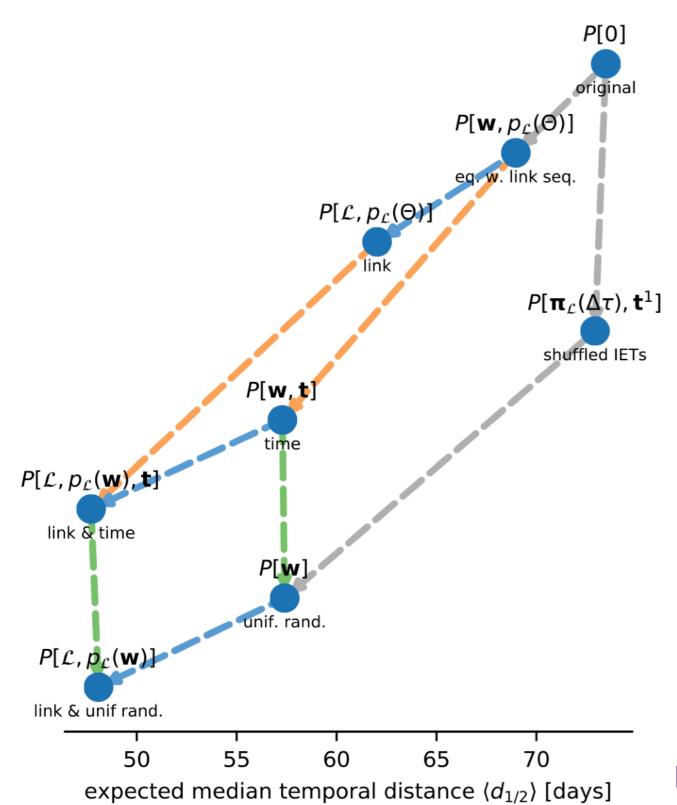

Shuffling methods in the literature

Link timeline shuffling methods



Shuffling methods in the literature

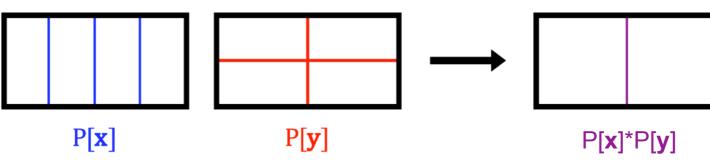

Link shuffling methods


Snapshot shuffling methods

Shuffling methods in the literature

Example analysis

Randomize link activation seqs. to follow overall activity $\Theta \rightarrow \mathbf{t}$ \Rightarrow 12-14 day speedup


> Randomize locations of link weights $\mathbf{w} \rightarrow p(\mathbf{w})$ \Rightarrow 7-9 day speedup

Randomize overall activity **t** ⇒ no difference

Data from Wu et al. PNAS 107:18803 (2010)

Combining RRMs

 P[x]*P[y]: a combination, first apply P[y] to a network and then apply P[x] to the result

- A way of creating new RRMs
- P[x]*P[y] might not be an MRRM (if they are, we say they are *compatible*)
 - Some clearly compatible cases:
 - P[**x**]*P[**y**] = P[**y**]*P[**x**] = P[**y**] if **x** < **y**
 - "Orthogonality": e.g., P[x] permutes time, and P[y] permutes topology

Combining MRRMs

- Compatible \Rightarrow commutative P[x]*P[y] = P[y]*P[x]
- General characterisation for compatibility: Two MRRMs compatible iff they are conditionally independent* given a common coarsening
- P[x], P[y] compatible \Rightarrow P[x, g(y)] * P[y, f(x)] = P[x*y, g(y), f(x)]
- •We can create over 100 new MRRMs by combining the ones in the literature

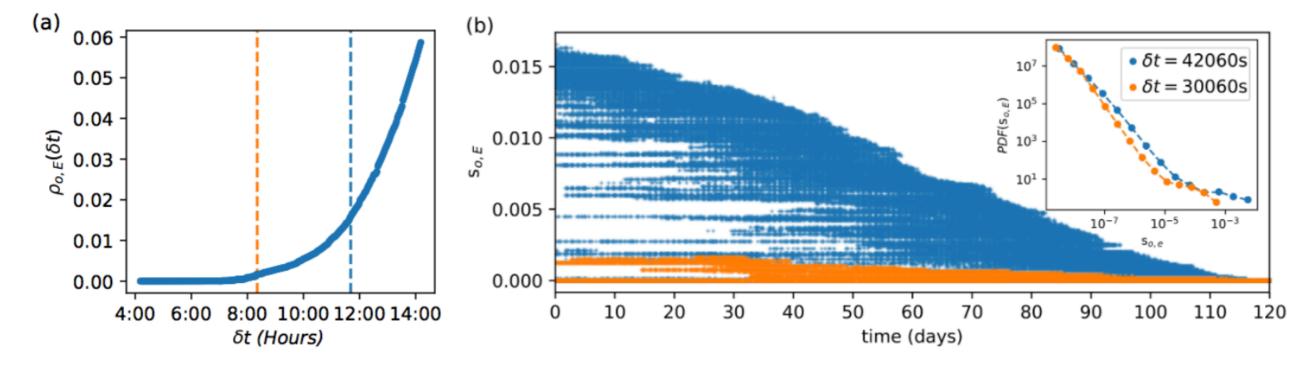
*For detailed definitions etc, see: arXiv:1806.04032

Temporal MRRMs = toolbox for analysing temporal networks

"Randomized reference models for temporal networks" arXiv:1806.04032

Software for MRRMs

- Python/C++ implementation
 - Efficient (handles hundreds of millions of events)
 - https://github.com/bolozna/Events
- Pure Python implementation
 - More models
 - https://github. com/mgenois/RandTempNet


Some future directions

- 1. Use the same framework for other higher-order network representations
- 2. Given a subset of constraints, automatically create a shuffling algorithm
- 3. "Macro-canonical" temporal reference models: exponential temporal random graphs

"Randomized reference models for temporal networks" arXiv:1806.04032

Temporal event graphs + probabilistic counting = temporal reachability from all starting points

Fraction of reachable network starting from each of 300M events:

"Efficient limited time reachability estimation in temporal networks", Arash Badie Modiri, M Karsai, MK (in preparation)